An automated, FPGA-based reconfigurable, low-power RFID tag

نویسندگان

  • Alex K. Jones
  • Raymond R. Hoare
  • Swapna R. Dontharaju
  • Shen Chih Tung
  • Ralph Sprang
  • Joshua Fazekas
  • James T. Cain
  • Marlin H. Mickle
چکیده

The use of radio frequency identification (RFID) technology is expanding rapidly in numerous applications such as logistics, supply chain management, transportation, healthcare and aviation. Due to the variety of the current applications, typical RFID systems use application specific hardware and proprietary protocols. These systems generally have long design times, no tolerance to changes in application or standard, and hence very high system costs. This paper describes an RFID tag specification and automated design flow for the creation of customized, low-power, active RFID tags. RFID primitives supported by the tag are enumerated with assembly like RFID macros. From these macros, the RFID pre-processor generates templates automatically. The behavior of each RFID primitive is specified using ANSI C where indicated within the template. The resulting file is compiled by the RFID compiler for the extensible tag. In order to save power, a smart buffer has been developed to sit between the transceiver and the tag controller. Because RFID packets are broadcast to everyone in range, the smart buffer contains minimal logic to detect whether incoming packets are intended for the tag. By doing so, the main controller may remain powered down to reduce system power consumption. Two System-on-a-Chip implementation strategies are presented. First, a microprocessor based system for which a C program is automatically generated and compiled for the system. The second replaces the microprocessor with a block of low-power FPGA logic. The user supplied RFID logic is specified in RFID macros and ANSI-C and automatically converted into combinational VHDL by the RFID compiler. Based on a test program, the processors required 183, 43, and 19 lJ per transaction for StrongARM, XScale, and EISC processors, respectively. By replacing the processor with a Coolrunner II, the controller can be reduced to 1.11 nJ per transaction. ! 2006 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design and Implementation of Field Programmable Gate Array Based Baseband Processor for Passive Radio Frequency Identification Tag (TECHNICAL NOTE)

In this paper, an Ultra High Frequency (UHF) base band processor for a passive tag is presented. It proposes a Radio Frequency Identification (RFID) tag digital base band architecture which is compatible with the EPC C C2/ISO18000-6B protocol. Several design approaches such as clock gating technique, clock strobe design and clock management are used. In order to reduce the area Decimal Matrix C...

متن کامل

Editorial FPGA - based reconfigurable computing II

This ‘‘Special Issue on FPGA-based Reconfigurable Computing’’ presents a collection of high-quality papers from the FPGA research community. The 23 accepted papers were selected from the 74 submissions received from 14 countries. These 23 accepted papers are arranged to be published in three issues. In the first issue of the threeissue series, we have published 8 papers in Volume 30, Issue 6, 2...

متن کامل

Reconfigurable Agile Tag Reader Technologies for Combined EAS and RFID Capability

In the context of electromagnetic tagging, we present the results from our ongoing work to unify Electronics Article Surveillance (EAS) and RadioFrequency Identification (RFID) technologies using an open architecture design for tag readers. Two fundamental approaches are presented: microcontroller-based architectures and Field Programmable Gate Array (FPGA) architectures. Using these flexible d...

متن کامل

Passive active radio frequency identification tags

This paper describes the Passive Active RFID Tag (PART). The first innovation is an automated method to generate RFID tag controllers based on high-level descriptions of a customised set of RFID primitives. We are capable of targeting microprocessor-based or custom hardware-based controllers. The second innovation is a passive burst switch front-end to the active tag. This switch reduces power ...

متن کامل

FPGA Implementation of JPEG and JPEG2000-Based Dynamic Partial Reconfiguration on SOC for Remote Sensing Satellite On-Board Processing

This paper presents the design procedure and implementation results of a proposed hardware which performs different satellite Image compressions using FPGA Xilinx board. First, the method is described and then VHDL code is written and synthesized by ISE software of Xilinx Company. The results show that it is easy and useful to design, develop and implement the hardware image compressor using ne...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Microprocessors and Microsystems

دوره 31  شماره 

صفحات  -

تاریخ انتشار 2007